Automated effective band structures for defective and mismatched supercells.
نویسندگان
چکیده
In plane-wave density functional theory codes, defects and incommensurate structures are usually represented in supercells. However, interpretation of E versus k band structures is most effective within the primitive cell, where comparison to ideal structures and spectroscopy experiments are most natural. Popescu and Zunger recently described a method to derive effective band structures (EBS) from supercell calculations in the context of random alloys. In this paper, we present bs_sc2pc, an implementation of this method in the CASTEP code, which generates an EBS using the structural data of the supercell and the underlying primitive cell with symmetry considerations handled automatically. We demonstrate the functionality of our implementation in three test cases illustrating the efficacy of this scheme for capturing the effect of vacancies, substitutions and lattice mismatch on effective primitive cell band structures.
منابع مشابه
for “ Automated effective band structures for defective and mismatched supercells ”
where the transformation or supercell matrix M is nonsingular with integer components, which implies that the SC is commensurate to the pc. The determinant of M is the multiplicity N of the SC, i.e. the ratio of the respective volumes VSC/vpc. The hexagonal pc and orthorhombic SC of the two-dimensional honeycomb net is depicted in figure A.1a. In reciprocal space, there are consequently two dis...
متن کاملMultiple-quantum-well-based photonic crystals with simple and compound elementary supercells
Exciton polaritons in one-dimensional photonic crystals based on multiple quantum well structures are investigated. The effects due to interplay between resonant interaction of light with quantum well excitons, and light scattering from well-barrier interface, are elucidated. Polariton dispersion equations and reflection spectra in structures with two wells in an elementary supercell of the per...
متن کاملElectronic structure calculations in a uniform magnetic field using periodic supercells
We have recently presented a method that allows one to use periodic supercells in ab initio electronic structure calculations in the presence of a finite magnetic field [Phys. Rev. Lett. 92 (2004) 186402]. This method retains the simplicity and efficiency of plane-wave basis sets and Fourier transforms. The original formulation was developed for cubic cell and for the k = (0,0,0) point of the s...
متن کاملEffective band structure of random alloys.
Random substitutional A(x)B(1-x) alloys lack formal translational symmetry and thus cannot be described by the language of band-structure dispersion E(k(→)). Yet, many alloy experiments are interpreted phenomenologically precisely by constructs derived from wave vector k(→), e.g., effective masses or van Hove singularities. Here we use large supercells with randomly distributed A and B atoms, w...
متن کاملAdaptive methods for growing electronic circuits on an imperfect synthetic matrix.
Living systems can adapt to injuries and even heal themselves, an ability desirable also in synthetic systems. A method is presented for dynamically adapting the construction of an electronic circuit to hardware defects by formulating the process as a series of interactions between identical but specialized structures called supercells. The circuit components, including wires, can occupy any pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 26 48 شماره
صفحات -
تاریخ انتشار 2014